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On the tt2 correction terms in quantum integrability 
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Abstract. We study the question of quantum integrability for two-dimensional Hamiltonian 
systems with special attention on the A’ correction terms in the potential. A class of 
Hamiltonians of type H = f ( p t  + pf ) + 1 . 4 ~ ~  + y? I f y ( . ~ )  + r b ]  + f0l.r) with a second invariant 
of type I = p t  + A ( . - t . ~ ) p ;  7 B(.u.y)p,p, + C(s ,y)pf  t D ( . x , y ~  is considered. The general 
solution for f: involves elliptic integrals. For quantum integrability the potential must 
be modified with h?-dependent terms. We construct a point transformation which, after 
coupling constant metamorphosis, takes the Hamiltonian to a new quantum integrable 
Hamiltonian for which no correction terms are necessary. The new system does not in 
general hake a Rat space kinetic part. 

1.  Introduction 

The question of whether quantum integrability is a consequence of classical integrability 
has been long standing and is still unanswered in full generality. It is clear, from 
existing results, that if such a relation holds i t  is far from trivial. In a series of works 
[ 1-31 we have addressed this fundamental question, focusing on two-dimensional 
Hamiltonian systems and found the following. In all known cases starting from a 
classical Hamiltonian and an  integral of motion (the Poisson bracket of which is zero) 
one can obtain two commuting quantum operators, which tend to the Hamiltonian 
and the first integral of the classical limit. However, it has not been possible to 
formulate a general proposition on this, and the above conclusion was reached by 
studying each known case individually. In some cases, e.g. whenever the constant of 
motion is quadratic in the momenta, a straightforward quantisation suffices to give 
commuting operators. However, not all invariants are p-quadratic, and for some of 
them no linear quantisation procedure can lead to commuting operators. It has turned 
out that, even in these cases, we can obtain quantum integrability by adding suitable 
quantum corrective terms, which are explicitly fi  dependent, to both the invariant 
and the Hamiltonian. Such corrections are expected in the invariant due to ordering 
ambiguities, but i t  is surprising that they are also needed for flat space Hamiltonians, 
for which no  ordering ambiguity exists. There seems to be no  general way of obtaining 
these correction terms, although the procedure can be systematised in most cases. 

The existence of additive terms, especially in the Hamiltonian, is a puzzling phe- 
nomenon and one may wonder on their possible origin (a more physical one, something 
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more than just being ud hoc corrections which restore quantal integrability). In this 
paper we will present a new viewpoint to this problem. 

First in $2 we will introduce a new integrable (two-dimensional Hamiltonian) sys- 
tem. which contains as limiting cases some of the more interesting (for our study) 
Hamiltonians, namely some of those which necessitate corrective terms in both Hamil- 
tonian and invariant in order to achieve quantum integrability. The origin of this 
Hamiltonian can be traced back to [4], although due to its complicated form only 
some of its special limits have been derived previously. Next we proceed to quantise 
the Hamiltonian and the constant of motion, and obtain the corrective quantum terms. 
For the Hamiltonian these extra terms are considerably more complicated than the 
constant x h ' s ~ '  term that has been sufficient before. 

In $3 we consider the problem of whether i t  is possible to eliminate the corrections 
in the quantum Hamiltonian through the quantum effect of some transformation. It 
turns out that this can indeed be realised. Thus one can find a canonical' form of 
the Hamiltonian (where by canonical we mean here the form which can be quantised 
without additive quantal terms). However, it is one where the kinetic part is, in general, 
i [ p t  + pfc(s)] .  The corrective terms are therefore due to the fact that we chose to 
iepresent the Hamiltonian in flat space, i.e. with kinetic part i ( p3  + pf). Thus we can 
make the conjecture that, if correction terms are needed in the Hamiltonian, there 
exists a transformation to a 'curved space' system, which is integrable without any 
corrections. 

2. N e w  integrable two-dimensional Hamiltonians 

The Hamiltonian we are going to derive and quantise in this study belongs to a class 
of integrable Hamiltonians 

with a second invariant having the form 

The problem of finding Hamiltonians belonging to the above class has been addressed 
in [4], where i t  has been shown that a necessary condition for (2) to be a conserved 
quantity is that 

or equivalently 

The condition ( H ,  lipe = 0 yields immediately 

A = 4[~' ' f ' i ' ( .~) + j , f ; ( .~ )  + f n ( . ~ ) ]  

B - 4 [ 2 ~ f ; ( . ~ )  + f l  ( s ) ]  

C = 8 f ? ( ~ ) .  
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This still leaves two equations, from which D can be solved if one extra (non-linear) 
condition is satisfied, a condition which involves the f , .  The general solution to this 
problem is not known. 

In [5] the case f z  = 0 was examined and a family of solutions (although not the 
general solution) was obtained. Potentials in this family contain as special cases the 
well known Henon-Heiles [6] and Holt [4,7] potentials. In [4] an analysis of the 
case with f 2  # 0 was attempted. Several specific examples of such potentials were 
found including the quartic potential of [8,9], and generalisations of Henon-Heiles and 
Holt potentials. The main progress was that several additive terms to the potentials 
compatible with integrability were identified. The same approach, and the study 
of quantum integrability, were the object of [ 2 ] ,  where further additive terms were 
obtained. From the above-mentioned studies it appears clearly that the problem will be 
quite difficult in its full generality and one must be content with interesting particular 
solutions. 

Thus in the present study we will limit ourselves to the special case of (4) where 
f l  = 0, f3 (y )  = c4y4 + z4j3' (a4 and 2 6  are constants), i.e. 

H = : ( p i  + pf)  + c4y4 + y'v;(.x) + x 4 ]  + fo(.x). (6) 

This Hamiltonian has as special limits a quartic Hamiltonian when a4 # 0, and the 
Henon-Heiles and Holt type models if r4 = 0, and can be thought as 'interpolating' 
between them. 

stands for the usual Poisson bracket. However, anticipating the problem of quantum 
integrability, we can at this stage ask about commutation of the operators associated 
with H and I .  I f  we assume the Weyl rule for associating variables pI, q1 with 
corresponding operators then we can work with c-numbers [2], after replacing the 
commutator with the Moyal bracket defined by 

The condition for I to be a constant of motion is {H,l}pB = 0, where 

Here, given the structure of H and I we can expand in powers of ti and retain only the 
non-vanishing terms. With ( 2 )  and (6) this leads to 

The equations for A ,  B and C do not change so (5) holds as before, but the remaining 
equations contain ti . The final equation for integrating D can be solved and leads to 
an fo of the form 

and the condition that f2 must be a solution of 

Then we get for D the expression 

D = -2y4(f:'fi - 8 ~ 4 f 2 )  + 4y2(4f;f2 - f;fd + 4f1~6) - h 2 j ;  + 4fi. ( 1  1) 
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In this way all s dependency has been expressed through f?. For notational simplicity 
we drop the subscript 2 from now on. 

The differential equation ( I O )  can be integrated three times to 

where 8, are the integration constants. The final quadrature yields f implicitly by 

which, upon integrating, allows the calculation of the potential and the invariant. The 
completion of the integral (13) is, in fact, possible in full generality. Starting with the 
transformation 

f = (aW + b) / ( cW + d )  (14) 

one can choose parameters a, b, c and d in such a way as to reduce the integral to the 
form 

which can be expressed in terms of elliptic integrals [IO].  
The final form of f is not very explicit so i t  is useful to consider some limiting 

cases. In the case where only one of the constants c4, p, is different from zero one gets 

f = constant x x4 "L"" with m = 0, 1,2,3. 

The cases f = x or .Y' yield separable systems, and since the cross term B ( x , y ) p , p ,  
does not vanish we get a third constant of motion and the systems are 'superintegrable' 
[ I  11. I f f  = sx4 we get the Holt model [4,7] 

and i f f  = $.x4 we get [2,4] 

Another interesting reduction is the one corresponding to c4 = 0. In this case the 
polynomial in the fourth root in (13) is simply P2sz + P , s  + Po which can be translated 
and scaled to $ + I .  Furthermore the transformation s = sinh(t) allows expression of the 
integral x = x(f ) in terms of incomplete elliptic integrals, but unfortunately inversion to 
f = f ( x )  is not possible in closed form. There are several other interesting reductions 
leading to the integral J(cosh(t)) '  'dt ,  just as in the previous case, after suitable 
transformations. Among them we distinguish the case where ( f ' )4  = (af' + b)2(cf  + d ) ,  
the significance of which will become clear in the next section. Indeed, by shifting and 
rescaling f ,  the right-hand side becomes 8f (6  - f)'. Then putting f = f sin(t)2 we 
obtain .Y = J(sin(t)) '  'dt. 

In conclusion, we have obtained a new integrable two-dimensional Hamiltonian 
system, which contains as limiting cases other well known Hamiltonians and which is 



h’ correction terms in quantum integrability 1319 

also quantally integrable. H and I are polynomials in momenta and the J’ variable, 
while the .Y dependency enters through the function f ,  defined by (10) or  (12). The 
required quantum correction to the polynomial is - ~ h ’ L f ” ( x ) / f ’ ( . ~ ) ] ? .  

3. Can the quantum corrections be explained? 

In the process of making the classically integrable Hamiltonian also integrable in 
quantum mechanics we had to introduce some terms explicitly depending on h. The 
next question we will study is the origin of these quantum corrections and whether one 
can eliminate them. 

In [3]  we have introduced the concept of the coupling-constant metamorphosis 
(CCM). This is a (non-canonical) transformation to a ‘new time’ in which the energy 
and the coupling constant of some term of the potential are exchanged. We have 
shown that such a transformation does preserve integrability. As was shown in [3] 
this type of transformation, coupled with a point transformation, can induce into the 
Hamiltonian certain correction terms which could be made identical to the quantum 
integrability corrections. 

Let us therefore consider the point transformation 

in the Hamiltonian H = : p i  + K ( p , ,  u.y). Suppose that there exists in K ( p , , u , y )  a n  
additive term -a[g ’ (g - ’ (u ) j ] -*  with a free constant a, i.e. 

H = + L(P , ,u ,Y )  - a[g’(g- ’ (u) ) I - ’  (19) 

where L is a independent. After the point transformation (18) we multiply (19) with 
g’(x)’ in order to obtain a standard-type kinetic term in the x coordinate ( E  is the 
conserved value of H ) :  

€ g ’ ( x ) ?  = i p :  + g ’ ( x ) 2 L ( p , , g ( x ) , , v )  - a.  (20) 

Through CCM the constant a can be taken as the new energy and the new Hamiltonian 
1s 

This result holds in classical mechanics. Now Pak and Sokmen have shown [12] 
that, when these transformations are made in quantum mechanics, there will be extra 
quantum corrections in the potential given by 

This sets the stage for answering the question we addressed at the beginning of this 
section: by choosing a suitable point transformation (and performing a CCM) we may 
change the system to one where the quantum corrections disappear. It is clear from the 
outset that the price we will have to pay is to have a Hamiltonian expressed no  longer in 
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a flat space because of the factor g’(x)’ in L above. Sometimes the new Hamiltonian has 
y dependency only through y 2 ;  then a further canonical transformation y = p t ,  pi = --c 
yields a Hamiltonian with a conventional flat space kinetic part [3,13]. However, this 
last step is not necessary from the point of view of eliminating the quantum corrections. 

The quantum corrections in the potential at hand are present just in fo through 
the term ( 9 ) :  

k (23) Ab’ = -:/j:(f’’/j’’)?. 

To find the necessary transformation, let us equate the quantum corrections ( 2 2 )  and 
(23) : 

where r ;  and r; come from the possible h’-dependent parts of the corresponding free 
constants. (In the other constants x b ,  p, and r4, such A’-dependent parts would not 
help.) 

In addition to (24) there is another condition necessary for CCM to work completely: 
there must be a constant in the potential which can be identified with E in (21). From 
(6) and (9) we see that the constants must come from x 8  or  x9 and we infer the condition 

(25) [g’(x)f’(-u)]’ = af(.u) + b 

for some constants a and b. In the following we will obtain the complete solution to 
equations (24) and (25) when f’ is given by (12). However, other solutions to (24) 
alone d o  exist and they eliminate the quantum corrections, but if we wish to have an  
underlying Hamiltonian that is integrable at  any energy we must require ( 2 5 )  as well. 

Let us rewrite equation (12) as (f‘)‘ = P(f),  where P( f )  is the cubic polynomial in 
the RHS, and introduce the derivative with respect to f and denote i t  by an  overdot. 
If we assume in general that f’g’ = G(f)  then equation (24), with f as an independent 
variable, becomes : 

G 3 G ’ 1 G P  P 8 x b f  -4 r$  - _ -  
G 2 ( c )  P .  

In the present case with G = [2(af + b ) ] ’  ‘ we obtain 

- :u’P + u(af + b)P = (af + b ) ’ [ P  + 16(2x;f - x i ) ] .  (27) 

This has two solutions (when P is a cubic polynomial in f ) .  ( i )  If a = 0 (hence b # 0, 
say b = I J we must take rk = -3c4 and x $  = 8:/8. This works for any P. (ii) If a # 0 
then we find that P must be of the form P = (af + b)?(cf + d )  and then x ;  = - i a 2 c ,  
z$ = +u-d + hubc. (This case is one of those where the integration reduces to the 
integration of J(sin(t))’  ’ dt, as was mentioned in $2.)  Once G is known the integration 
for g is straightforward. To construct the underlying h-independent Hamiltonian we 
d o  not need f or g as functions of x but only f as a function of g. 

( i )  In the case G = 1 i t  is easy to verify (based the well known properties of Jacobian 
elliptic functions [ I O ] )  that 

- 7  

f ( x )  = A + B sn(Cg(x) ,  k)’ (28) 



tl' correction ternis iri quuntum integrabilitj, 1321 

together with f ' g '  = 1 lead to (121. and to find the relation between c4, and A, B 
and C. (Let us at  this point also note that the Holt potential (16) is obtained in the 
singular limit A = 0, B + x, C -+ 0, with B C 2  = 9, while (17) follows when A = 0, 
B -+ 0, C k  + x, with B - ' C 2 k 2  = 32.) 

( i i )  In the case G = [2(uf + b ) ] '  '. P = (uf +b) ' ( c f  + d ) .  U # 0 we find instead the 
relation 

(29) 

In all cases above a solution to equation (24) is obtained. In principle, any g 
that solves (24) leads to a cancellation of the quantal corrections in the Hamiltonian: 
by introducing the appropriate point transformation we can make the quantum- 
integrability corrections disappear. To each g there corresponds a Hamiltonian (in 
general with curved space kinetic part) which is integrable without quantum corrections 
and which leads to (6) with (9) and (10) when the point transformation g followed by 
CCM is made. 

To avoid unnecessary constants let us consider the normalised case only. Using 
the (inverse of) transformation (18) with CCM and (28) with A = 0, B = \, C = 1 (i.e. 
P ( f )  = 8f(f - i ) (k'f  - i))  we arrive at the final expression for the Hamiltonian and 
the invariant: 

H '  = ; p i  + sn(u) cn(u) dn(u)pf + rj sn(u) cn(u) dn(u) j"  
+ J' (c4[3 sn(u)' - 2 sn(u)'] - sn(u)' + 

f ( s )  = -(1/2ac){(ad - bc)  cos[(uc/2)'  g(x)] + (ad + bc) ) .  

+ rh sn(u) cn(u) dn(u)) 
+ sn(u)'cn(u) dn(u) - sn(u) cn(u) dn(u)E + 2 6  sn(u)' - 28 sn(u)l. (30) 

We remark that no explicit A' terms enter expression (30). Note the appearance of 
a term sn(u)cn(u)dn(u)E which comes from the exchange of energy and coupling 
constant. Following the same steps we can obtain the invariant, although it is perhaps 
easier to derive it directly: the result is 

1 = p: - 8 j p u p ,  + 4pf [c4y4 + y'rh + sn(u)' - E ]  
+ 4c4jX + 8c4r6 j6  - 4j,' /2cj[2 sn(u)' + E - I ]  - 2; - 1 j 
- 4j '  i [4c4 sn(u)' - (4e4 + 2) sn(u)' + 2 sn(u)']/[sn(u) cn(u) dn(u)] 
+ 2z6[sn(u)' + E ]  - 22, + 3fi'c4). (31) 

Note that an  h'-dependent term persists in the invariant and to eliminate it one might 
try other methods [ 2 ] .  

For k' = 1 we can also use the other transformation ( i i )  as derived earlier (29). 
We choose the parameters so that they allow a direct comparison with the normalised 
case above. i.e. a = -1, 6 = 4. d = 0 and c = 8. This yields f = sin(g)' and then the 
transformed Hamiltonian is 
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Note that now xX - z0 becomes the new energy; 1," = x 6  - x 8  + q. 
Thus for k = 1 there are two different h-independent Hamiltonians to which the 

original system can be transformed. There should also be a transformation relating 
them, which produces only such h'-dependent terms which can be absorbed into the 
free constants. Since sn(g. 1 )  = tanh(g) we have 

tanh(g) = sin(u) (34) 

as the transformation producing this connection between (32) and (30) (for k = 1).  

4. Conclusion 

In this paper we have investigated the classical and quantum integrability of a two- 
dimensional Hamiltonian. The potential considered is an  even quartic polynomial in the 
y variable. We have determined the general form of the potential for the Hamiltonian 
to possess a second constant of the motion of the form p:  plus terms of lower order 
in the momenta. We have in particular focused on the quantum integrability (i.e. 
Moyal bracket rather than Poisson bracket vanishing), and have solved the problem 
and obtained the corrective h'-dependent terms which ensure quantum integrability. 

We have also addressed the interesting question about the meaning of these quan- 
tum integrability corrections, especially in the Hamiltonian. We have shown that, at 
least in the case at hand, i t  is possible to rewrite the Hamiltonian in a curved space 
(obtained through the introduction of a suitable point transformation combined with 
CCM) so as to make the corrective terms vanish. Thus these correction terms are 
the manifestation of the fact that the Hamiltonian possesses a more 'natural' form 
in a curved space and the corrections are present because we insist on writing the 
Hamiltonian in a flat space coordinate. This works in principle for all cases where the 
quantum correction for a flat space Hamiltonian is of the form h2[a( .x)  + ~ ( J J ) ] .  
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